SD200 Series Intelligent Water Pump Inverter Simple Instructions V1.0 This manual will explain the use and precautions of the product. Please be sure to read this manual carefully before installation and use in order to use the inverter correctly and safely. #### 1) Safety precautions #### Safety precautions - Please have qualified professionals perform installation, operation, maintenance and inspection. - lacktriangledown In this manual, safety precautions are divided into "Warning" and "Note". - A WARNING: Improper operation may create a hazardous situation which may result in death or serious injury. - \triangle CAUTION: Improper operation may create a hazardous situation which may result in minor or moderate injury or property damage. #### △ police tell - Wiring must be completed by qualified professional electrical engineers, otherwise it may cause electric shock or damage to the inverter. - The grounding terminal must be grounded reliably, otherwise the inverter casing may be electrified. - If you want to change the wiring or check, you should first turn off the power of the inverter. Before the seven-segment display of the inverter goes off, it means that there is still high voltage inside the inverter. Do not touch the internal circuits and components. - Please do not operate, touch the heat sink, or plug or unplug cables with wet hands, otherwise it may cause electric shock. - \bullet Do not use a circuit breaker to control the stop or start of the inverter, otherwise the inverter may be damaged. - ullet Do not replace the cooling fan while the power is on. Otherwise, it may be dangerous. It is dangerous to replace the cooling fan while the power is on . #### A Note meaning - \bullet The voltage applied to each terminal can only be the voltage specified in the operation manual, otherwise it will cause malfunction or damage. - ullet When the power is on or just after it is disconnected, because the inverter temperature is high, only touch the operator, otherwise it may cause burns. - The factory preset parameters of the inverter can meet the operating requirements of most equipment. If it is not necessary, please do not modify the inverter parameters at will. Even if some equipment has special requirements, only the necessary parameters can be modified. Otherwise, modifying the parameters at will may cause damage to the equipment. - The company provides warranty and repair for this product in accordance with the "Product Quality Management Law" and does not bear joint and several liability. If the user uses this product, the motor fails. If the motor fails or burns out, the company will not be responsible for repairing or compensating the motor, and the company will not bear joint liability for the impact of the machine failure on the user. #### 2) SD 200 Series product information #### 2.1 Product appearance size, model | Voltage | T N | Achievement | Ruler | Inch (| (mm) | Adaptive | D | |-----------|----------------|-------------|-------|--------|--------|------------|---| | level | Type Number | Rate (kW) | Н | W | D | motor (kW) | Preparation Note | | 220V | SD 200-2S0, 75 | | | | | | Factory default 2.2 | | Single in | | 0.75 kW | 204 | 150 | 101 | 0.75 kW | kW, available pass
f/1.12 Setting up | | and three | S200-2S1. 5 CX | | | | | | Adjustment | | | | 1.5 kW | 204 | 150 | 101 | 1.5 k₩ | 0: 0.75 kW 1: 1.5 kW | | out | S200-2S2. 2 CX | 2. 2 kW | 204 | 150 | 101 | 2. 2 kW | 2: 2.2 kW | Note: SD -2S2.2 CX in CX Representatives standard power input, output lines and pressure sensor. # 2.2 Machine installation steps # 2.3 Operation panel description | Name say | Definition and Operation Instructions | | | | | |----------------------|---|--|--|--|--| | "menu"button | O Click the level menu to shift and view the parameter function. Long | | | | | | menu button | press 2 Enter in seconds 1 Level parameter setting menu | | | | | | C /C | O Click Run/Stop/Reset in the primary menu; 1/2/3 Level password | | | | | | Start/Stop"button | input menu click confirm | | | | | | "Increase "button | O Click the menu to increase the set pressure, frequency, and modify | | | | | | Increase button | the parameter value. Long press to increase quickly. | | | | | | "D 1 "1 | O Click on the menu to reduce the set pressure, frequency, and modify | | | | | | "Reduce "button | the parameter value. Long press to quickly reduce | | | | | | " Target pressure | When it is displayed as $^{\prime\prime}$ Target pressure $^{\prime\prime}$ and "Current Pressure $^{\prime\prime}$ | | | | | | "Indicator light | lights up, lights up when adjusting the pressure | | | | | | "Current Pressure | When it is displayed as " Target pressure " and "Current Pressure | | | | | | "Indicator light | "Light up | | | | | | " "T 1: 1: 1. | Always on when running, flashing when in sleep mode, off when in | | | | | | "run"Indicator light | shutdown mode | | | | | | "Warning"Indicator | Flashes when in fault state, turns off when not in fault state | | | | | | light | | | | | | | "Manual "Indicator | when F0.44=1 In speed control mode, the indicator light is on, and in | | | | | | light | other modes it is off | | | | | ## 2.4 Machine various modes display ## 2.5 Main circuit and control circuit wiring diagram # 2.6 Sensor wiring diagram #### 2.7 Quick debugging parameter settings #### 2.7.1 Standalone debugging mode Under normal circumstances, the machine is equipped with input and output cables and sensors. When connecting the water pump, the motor connection needs to be changed from the original star type (380V) to Adjust to triangle (220V) Working mode; After power on, long press 3 Seconds "+"or"-" key to enter the pressure setting mode. d After setting the target pressure, press the "Start/Stop" key Save, then press "Start/Stop" key to start the machine, and the machine enters normal working mode; FO.14=1 is the power-on self-start function (need to be turned on by the $\,$ customer) Water pump direction ${\tt confirmation}$ After setting the parameters, you can do a short test run to see if the pump is turning correctly. Steering: - A. Stop the inverter and change the inverter output U, V, W Any two phases in . - B. Stop the inverter and modify the parameters F0.02. ### 2.7.2 Multi-connection mode Wiring: Connect the terminals of the machine to be connected $485 \mbox{+}$ all in parallel, $485 \mbox{-}$ all in parallel; ### For parameter settings, refer to the macro parameter table below: | System Type | Host | 1#
Auxiliar
y
machine | 2#
Auxiliar
y machine | 3#
Auxiliar
y
machine | 4#
Auxiliar
y machine | 5#
Auxiliary
machine | | |--------------------------------------|----------|--|-----------------------------|--------------------------------|-----------------------------|----------------------------|--| | Single pump
water supply
setup | F0. 47=1 | \ | \ | \ | \ | \ | | | Two network host settings | F0. 47=2 | F0. 47=11 | \ | \ | \ | \ | | | Three network
host settings | F0. 47=3 | F0. 47=11 | F0. 47=12 | \ | \ | \ | | | Four network host settings | F0. 47=4 | F0. 47=11 | F0. 47=12 | F0. 47=13 | \ | \ | | | Five network host settings | F0. 47=5 | F0. 47=11 | F0. 47=12 | F0. 47=13 | F0. 47=14 | \ | | | Six network host settings | F0. 47=6 | F0. 47=11 | F0. 47=12 | F0. 47=13 | F0. 47=14 | F0. 47=15 | | | Emergency water supply mode | F0. 47=9 | When the sensor fails, set this parameter and the machine will turn off the pressure alarm. Adjust output frequency to ensure emergency water supply | | | | | | # 3) Function parameter table " $\dot{\chi}$ ": Indicates that the setting value of this parameter can be changed when the inverter is in standby or running state. " \star ": Indicates that the setting value of this parameter cannot be changed when the inverter is in operation; " \bullet ": Indicates that the value of the parameter is the actual detection record value and cannot be changed; "*": Indicates that the parameter is a "factory parameter", which is limited to manufacturer settings and users are prohibited from operating | Function | | | Factory | | |----------|---|--|----------|--------| | code | Name say | Parameter Description | value | Change | | | I | F0Basic function group | | | | F0. 00 | Pressure
setting | Available in 0 In the Advanced menu, use the "+" button to increase the pressure setting value, pass"-"Button to reduce the pressure setting value Setting range: 1.0 bar ~ F0.21 | 3.0 bar | ☆ | | F0. 01 | Wake-up
stress
deviation | Target pressure minus current pressure
is greater than FO.01 When the machine is
running Setting range: 0.0 bar ~ FO.00 | 0.3 bar | ☆ | | F0. 02 | Running
direction
selection | Adjustable water pump steering 0: The direction is consistent 1: Opposite direction | 0 | ☆ | | F0.03 | Sensor range | Setting range: 1.0~200.0 bar | 10.0 bar | ☆ | | F0. 04 | Sensor
Feedback Type | Different modes can be selected according to
the sensor feedback signal used
0:4-20 mA /24V
1:4-20 mA /10V
2:0-10V
3:0.5-4.5V
4:0-5V | 0 | ☆ | | F0. 05 | Pressure
calibration
factor | Setting range: 0.750~1.250 | 1.000 | ☆ | | F0. 06 | Proportional
Gain Pl | Setting range: 0.0~100.0 | 2.0 | ☆ | | F0. 07 | Integration
time Il | Setting range: 0.00s∼10.00s | 0.50s | ☆ | | F0. 08 | PID Feature
Selection | 0: Off
1: Sleep mode 1
2: Sleep mode 2 | 1 | ☆ | | F0.09 | PID Sleep
delay | Setting range: 0.0s∼100.0s | 5.0s | ☆ | | F0. 10 | PID Wake-up
delay | Setting range: 0.0s~100.0s | 3.0s | ☆ | | F0. 11 | PID Sleep
frequency | If the frequency is lower than this, the machine will enter sleep mode. Setting range: Fl.31 to upper limit frequency | 30.00 Hz | ☆ | | F0. 12 | PID Low
frequency
hold
Frequency
running time | Setting range: 0.0s∼120.0s | 5. 0s | ☆ | | F0. 13 | PID Sleep
deviation
pressure | Setting range: 0.0 bar to 1.0 bar | 0.1 bar | ☆ | | F0. 14 | Automatic on
power on
Startup
Function | After it is turned on, the power will be delayed to start automatically 0: Off 1: On | 0 | ☆ | | F0. 15 | Power-on
automatic
start delay | Setting range: 0.0~100.0s | 5. 0s | ☆ | | F0. 16 | Antifreeze
function | 0: Off
1: On | 0 | ☆ | | F0. 17 | Antifreeze
operation
frequency | Setting range: 0.00~50.00 Hz | 10.00 Hz | ☆ | | F0. 18 | Antifreeze
operation
time | Setting range: 0~1000s | 60s | ☆ | | F0. 19 | Antifreeze
operation
cycle | Setting range: 0~1000s | 300s | ☆ | | F0. 20 | Water leakage
coefficient | Setting range: 0.1~100.0 | 2. 0 | ☆ | | F0. 21 | High pressure
alarm setting
value | Setting range: F0.00 ∼F0.08 | 9.0 bar | ☆ | | F0. 22 | High voltage
alarm delay | Setting range: 0.0∼ 120.0s | 3. 0s | ☆ | | F0. 23 | Low pressure
alarm setting
value | Setting range: 0.0 bar ~ F0.00 | 0.0 bar | ☆ | |--------|---|--|----------|---| | F0. 24 | Low pressure
alarm delay
time | Setting range: 0.0~120.0s | 3.0s | ☆ | | F0. 25 | Water
shortage
protection
function | 0: Off 1: According to the frequency, Current to judge water shortage 2: Judge by frequency and pressure 3: According to the frequency, Current and pressure to determine water shortage | 2 | ☆ | | F0. 26 | Water
shortage
failure
Detection
threshold | Water shortage will
be judged when the
pressure is lower
than this Setting
range: 0.0 bar ~ F0.00 | 0.5 bar | ☆ | | F0. 27 | Water shortage protection Detection frequency | If the frequency is greater than this, it will be judged as water shortage. Setting range: 0.00 Hz to upper limit frequency | 48.00 Hz | ☆ | | F0. 28 | Water shortage protection detection Current percentage | When the running current is less than this current, it is judged as water shortage. Setting range: $0.0\!\sim\!100.0\%$ | 40.0% | ☆ | | F0. 29 | Water
shortage
protection
Detection
time | The alarm will be triggered after this time when the water shortage condition is met Setting range: $0.0\sim200.0s$ | 60.0s | ☆ | | F0. 30 | Automatic
water
shortage
protection
Restart Delay | After reporting a water shortage fault, the machine resets the fault code after this time delay. Setting range: $0\!\sim\!9999$ minute | 15 min | ☆ | | F0. 31 | PID Sleep
rate | Setting range: 0∼30 | 9 | ☆ | SD200 | | | Intelligent oun | | verte | |---------------|--|---|------------------|--------| | Function code | Name say | Parameter Description | Factory
value | Change | | F0. 32 | Water
pressure test | When the outlet pressure is greater than this value, after a delay F0.30 Fault reset Setting range: 0.0 bar ~ F0.00 | 1.0 bar | ☆ | | F0. 33 | Water testing
time | Setting range: 0.0~100.0s | 20.0s | ☆ | | F0. 34 | AI minimum
input | Setting range: 0.00V~+10.00V | 2.00V | ☆ | | F0. 35 | AI maximum
input | Setting range: 0.00V~+10.00V | 10.00V | ☆ | | F0. 36 | Acceleration
time 1 | Setting range: $0.0s \sim 100.0s$ | 2. 0s | ☆ | | F0. 37 | Deceleration
time 1 | Setting range: 0.0s~100.0s | 2. 0s | ☆ | | F0. 38 | Parameter initialization | O: No operation 1: Restore factory parameters, excluding motor parameters 2: Clear the number of records | 0 | * | | F0. 39 | Parameter
function lock | 0: Parameters are not locked
1: Parameter lock | 0 | ☆ | | F0. 40 | Fault Record | Setting range: 0~50 | 0 | • | | F0. 41 | Radiator
temperature | _ | - | • | | F0. 42 | Software
version
number | - | - | • | | F0. 43 | | 0: Digital setting (no memory after power failure) 1: Digital setting (power-off memory) 2: Keyboard potentiometer 3:All 4: Multi-speed command 5: Simple PLC 6: Digital setting (no memory after power failure) 7: Digital setting (no memory after power failure) 8: PID 9: Communication setting | 0 | * | | F0. 44 | System
working mode | Adjust this value to change the working mode 0: Constant voltage mode 1: Constant speed mode | 0 | * | | F0. 45 | Pressure
display mode | 0: Overall display
1: Independent display | 0 | ☆ | | F0. 46 | Reserve | _ | - | ☆ | | F0. 47 | Application
macro | Refer to the macro parameter setting table
for details Setting range: 0~15 | 0 | * | | | selection | F1 Motor and auxiliary parameter group | | | | F1. 00 | Multi- connection slave backup master Machine action selection | 0: Stop 1: Constant speed 2: Constant pressure | 0 | ☆ | | F1. 01 | Multi-
connection
network Mode
Selection | 0: Slave
1: Host | 0 | • | | F1. 02 | Multi-link auxiliary machine Number of units | Setting range: 0 to 5 | 0 | • | | F1. 03 | Multi-
connection
operation
mode | O: Multi-pump main and auxiliary control 1: Multi-pump synchronous control 2: Multiple pumps with one in use and one in standby control | 0 | ☆ | | F/1.04 | Multi-line
rotation
Interval time | Setting range: 0 min ~ 3600 min | 240 min | ☆ | | F1. 05 | Maximum
output
frequency | Setting range: 50.00 Hz to 400.00 Hz | 50.00 Hz | * | 7 | F/1.06 | Upper
frequency | The maximum frequency range that the machine can adjust Setting range: lower frequency limit F1.07 \sim Maximum frequency F1.05 | 50.00
Hz | ☆ | |--------|---|---|-------------|---| | F/1.07 | Lower
frequency | Setting range: 0.00 Hz to upper limit frequency f/1.06 | 0.00 Hz | ☆ | | F/1.08 | Frequency is
below the
lower limit
Frequency
Action | 0: Run at the lower frequency limit 1:Shutdown 2:Zero speed operation | 0 | ☆ | | F/1.09 | Carrier
frequency | Setting range: 1.0 kHz to 16.0 kHz | 8.0 kHz | * | | F/1.10 | PID Feedback
loss
Detection
value | Setting range: 0.00∼10.00V | 0. 20V | ☆ | | F/1.11 | PID Feedback
loss
Detection
time | Setting range: 0.0s~100.0s | 30. 0s | ☆ | | F/1.12 | Motor power selection | Factory 2.2kW, customers need to adjust the settings according to the actual pump 0:0.75kW 1:1.5kW 2:2.2kW | 2 | * | | Function | Name say | Parameter Description | Factory | Change | |-----------------------|--------------------------------------|---|-----------------|--------| | code
F/1.13 | Motor rated power | Setting range: 0.1 kW to 2.2 kW | value
2.2 kW | * | | F/1.14 | Motor rated
frequency | Setting range: 0 to maximum frequency F1.05 | 50.00 Hz | * | | F1. 15 | Motor rated
voltage | Setting range: 0∼380V | 220V | * | | F/1.16 | Motor rated
current | Setting range: 1.00~10.00A | 9. 60A | * | | F/1.17 | User Password | Setting range: 0∼65000 | 0 | ☆ | | F/1.18 | XI terminal
function
selection | 0: No function 1: Forward operation FWD 2: Reverse operation REV 3: Three-wire operation control 4: Forward jog 5: Reverse jog 6: Fault reset | 1 | * | | F/1.19 | X2 terminal
function
selection | 7: Terminal UP 8: Terminal DOWN 9: UP / DOWN Set to zero 10: External fault input (normally open) 11: PLC Status reset 12: Multi-stage command terminal 1 13: Multi-stage command terminal 2 | 10 | * | | F1. 20 | X terminal filter
time | Setting range: 0.000s~1.000s | 0.010s | ☆ | | F/1.21 | X1 enable delay
time | Setting range: 0.0s~100.0s | 1.0s | ☆ | | F1. 22 | X2 enable delay
time | Setting range: 0.0s~100.0s | 1.0s | ☆ | | F/1.23 | X1 disable delay time | Setting range: 0.0s~100.0s | 0.0s | ☆ | | F1. 24 | X2 disable delay
time | Setting range: 0.0s~100.0s | 0.0s | ☆ | | F1. 25 | Fault automatic
reset times | Setting range: 0~10 | 5 | ☆ | | F/1.26 | Fault automatic reset time | Setting range: 0.0~100.0s | 30.0s | ☆ | | F1. 27 | Cooling fan | 0: The cooling fan runs when the motor is
running
1: Automatically operate according to the
radiator temperature | 1 | ☆ | | f/1.28 | Shutdown mode | 0: decelerate and stop
1: Free parking | 0 | ☆ | | F1. 29 | Keyboard setting frequency | Setting range: 0.00 Hz to maximum frequency F1.05 | 50.00 Hz | ☆ | | F1. 30 | PID Direction of action | 0: Positive effect
1: Counteraction | 0 | ☆ | | F/1.31 | PID Low Frequency Maintain frequency | Setting range: 0.00 Hz ~ F1.05 | 20.00 Hz | ☆ | | F1. 32 | Sleep detection
cycle | The machine detects sleep at this time $0.0{\sim}1000.0s$ | 30. 0s | ☆ | | F/1.33 | PWM mode1 | 0: CPWM
1: CPWM and DPWM Switch | 1 | * | | F1. 34 | Command source selection | Different start and stop modes can be selected 0: Operation panel command channel (LED Destroy) 1: Terminal command channel (LED on) 2: Serial port communication command channel (LED Flashing | 0 | ☆ | | F1. 35 | Local address | Setting range: 1~6,0 Broadcast address | 1 | ☆ | | F1.36 | Baud rate | 0:4800 bPS 1 :9600 bPS 2 :19200 bPS 3:38400 bPS | 1 | ☆ | | F/1. 37 | Data Format | 0: No check (8.N.1) 1: Odd parity (8.0.1) 2: Even parity (8.E.1) | 0 | ☆ | | F/1.38 | Response delay | Setting range: 0 ms to 20 ms | 2 ms | ☆ | | F1. 39 | Reserve | - | - | ☆ | | F1. 40 | Reserve | - | | ☆ | | F/1.41 | Reserve | - | - | ☆ | | F1. 42 | Motor Type
Selection | 0: Three-phase motor
1: Single-phase motor | 0 | * | | Function code | Name say | Parameter Description | Factory
value | Change | |---------------|---|--|------------------|--------| | F1. 43 | Single-phase
motor main and
auxiliary
Winding turns
ratio | Setting range: 10~200 | 100 | ☆ | | F1.44 | Single-phase
motor current
Correction
factor | Setting range: $50\!\sim\!200$ | 150 | ☆ | | F1. 45 | Water shortage
protection
Reset times | Setting range: 0∼9999 | 10 | ☆ | | F/1.46 | Reserve | _ | - | ☆ | | F1. 47 | Parameter Hide
Selection | F2 Group and subsequent parameters hidden selection O: Do not hide 1: Hide | 1 | ☆ | | Function code | Name say | Parameter Description | Factory value | Change | |------------------|---|--|---------------|----------| | | | F2 Debug parameter group | | | | F2. 00 | Alternate host | - | 0 | ☆ | | | command source
Multiple online | | + | | | F2. 01 | startup command | _ | 0 | ☆ | | | source | | | | | F2. 02 | Multi-pump online | Setting range: 1 to 6 | 1 | • | | | communication address Multi-connection | Sotting pongo, 1 to 6 | 1 | | | F2. 03 | small pump Address | Setting range: 1 to 6 | 6 | ☆ | | | Setting | | | | | F2.04 | Multi-link pump Delay
time | Setting range: 0.0s~100.0s | 5. 0s | ☆ | | | Communication start | 0: Invalid | | | | F2.05 | and stop Keeping the | 1: Valid | 0 | • | | | memory | | - | | | F2.06 | Pipe burst detection
time | Setting range: 0~1000s | 0s | ☆ | | | | B PID and sleep parameter group | | | | F/3.02 | Derivative time D1 | Setting range: 0.000s∼9,999s | 0s | ☆ | | F/3.03 | PID Start-up hold time | Setting range: 0.0∼100.0s | 2. 0s | ☆ | | F/3.04 | PID Deviation limit | Setting range: 0.0% to 100.0% | 0.0% | ☆ | | r/3.04 | | 0: Function code F0.00 setting 1:AI | 1 | <u> </u> | | F/3.05 | PID Given source | o. Tunction code to. oo setting 1.M | 0 | ☆ | | F/3.16 | Flow ratio of large pump | Setting range: 20.00 Hz to upper limit | 30.00 Hz | ☆ | | r/3.10 | to small pump | frequency | | | | | F6 Pr | otection and fault parameter group | | | | FC 00 | Motor overload software | 0: Disable | | | | F6. 00 | Protection options | 1: Allow | 1 | ☆ | | F6. 01 | Motor overload software | Setting range: 0.20~10.00 | 1.00 | ☆ | | 10.01 | Protection gain | Setting range. 0.20 -10.00 | 1.00 | - A | | F/6.02 | Motor quick stop | 0: Disable | 0 | ☆ | | | Excitation selection | 1: Allow | | | | F/6.03 | Overvoltage stall gain | Setting range: 0~100 | 0 | ☆ | | F/6.04 | Overvoltage stall | Setting range: 120.0% to 150.0% | 0 | ☆ | | | protection voltage | | | | | F/6.07 | Undervoltage point | Setting range: 60.0% to 140.0% | 100% | ☆ | | | setting | | (200V) | | | F/6.08 | Overvoltage point
setting | Setting range: 200.0V~810.0V | 400.0V | ☆ | | | | roup Monitoring Parameter Group | | | | 10.00 | | 0.00 Hz to 400.00 Hz | _ | • | | L0.00 | (Hz) | 0.00 % | | <u> </u> | | L0.01 | Set frequency
(Hz) | 0.00 Hz to 400.00 Hz | - | • | | L0.02 | Bus voltage (V) | 0. 0V~1000. 0V | - | • | | L0.03 | Output voltage (V) | 0~400V | - | • | | L0.04 | Output current (A) | 0.00A~50.00A | <u> </u> | • | | L0. 05
L0. 06 | Module temperature
X Input Status | 0°℃~100°℃ | - | • | | L0. 07 | The most recent failure | 0~99 | - | • | | L0. 08 | Keyboard potentiometer | 0.00V~10.57V | _ | • | | | voltage | 0.000 10.550 | | _ | | L0. 09 | AII Voltage (V) | 0.00V~10.57V | - | | | L0. 10 | Load speed display PID set pressure | 0~9999 rpm | + - | • | | L0. 11 | PID set pressure
PID feedback pressure | 0.0 bar to 9.9 bar
0.0 bar to 9.9 bar | + _ | • | | | Cumulative power-on | 0~65535 Hour | - | | | L0. 13 | time | | | _ | | L0.14 | Cumulative running time | 0∼65535 Hour | - | • | | L0.15 | Communication setting | | - | • | | | value | | | | | | I | * Grou | ıp Fault | Record | Parameter | Group | | | |----------|--------------------|--------|----------|--------|-----------|-------|---|---| | | The most recent | | | | | | | | | E0.00 | fault type | | | | | | | | | F0 01 | Most recent | | | | | | | | | E0. 01 | Fault frequency | | | | | | | | | E0. 02 | Most recent | | | | | | | | | EU. UZ | Fault current | | | | | | | | | | Most recent | | | | | | | | | E0.03 | Bus voltage during | | | | | | | • | | | fault | | | | | | | | | | The most recent | | | | | | | | | E0. 04 | failure | | | | | | | | | 20.01 | Input terminal | | | | | | | - | | | status | | | | | | | | | | The most recent | | | | | | | | | E0. 05 | failure | | | | | | | • | | 20,00 | Inverter | | | | | | | | | | temperature | | | | | | | | | E0.06 | Most recent | | | | | | | • | | | Fault pressure | | | | | | | | | E1.00 | Previous fault | | | | | | _ | • | | | type | | | | | | | | | E1.01 | Frequency of the | | | | | | - | • | | | last fault | | | | | | | | | E1.02 | Current at the | | | | | | - | • | | | previous fault | | | | | | | | | E1.03 | Previous failure | | | | | | - | • | | | Bus voltage | | | | | | | | | F1 04 | Previous failure | | | | | | | | | E1.04 | Input terminal | | | | | | _ | • | | | status | | | | | | | | | E1 OF | Previous failure | | | | | | | | | E1. 05 | Inverter | | | | | | | • | | \vdash | temperature | | | | | | | | | E1.06 | Pressure at the | | | | | | - | • | | | last fault | | | | | | | | # 4) Fault diagnosis and countermeasures | Fault name | Operation
panel display | Troubleshooting | Troubleshooting measures | |------------------------------------|----------------------------|--|---| | Accelerating | E002 | 1. The inverter output circuit is grounded or short-circuited 2. The control mode is vector and parameter identification is not performed 3. The acceleration time is too short 4. Manual torque boost or V/F curve is not suitable | 1. Eliminate peripheral faults 2. Perform motor parameter identification 3. Increase acceleration time 4. Adjust the manual lifting torque or V/F Curve 5. Adjust the voltage to the normal range | | overcurrent | | 5.Low voltage 6.Start the rotating motor 7.Sudden load during acceleration 8.The inverter is too small | 6. Select speed tracking start or wait until the machine stops before start up 7. Cancel sudden load 8. Choose a frequency converter with a higher power rating | | Deceleration
overcurrent | E003 | 1. The inverter output circuit is grounded or short-circuited 2. The control mode is vector and parameter identification is not performed 3. The deceleration time is too short 4. Low voltage 5. Sudden load increase during deceleration 6. No brake unit and brake resistor are installed | 1. Eliminate peripheral faults 2. Perform motor parameter identification 3. Increase deceleration time 4. Adjust the voltage to the normal range 5. Cancel sudden load 6. Install brake unit and resistor | | Constant
speed
overcurrent | E004 | 1. The inverter output circuit is grounded or short-circuited 2. The control mode is vector and parameter identification is not performed 3. Low voltage 4. Is there any sudden load during operation? 5. The inverter is too small | Eliminate peripheral faults Perform motor parameter identification Adjust the voltage to the normal range Cancel sudden load Choose a frequency converter with a higher power rating | | Accelerating
overvoltage | E005 | Input voltage is too high There is an external force dragging the motor to run during acceleration Acceleration time is too short No brake unit and brake resistor are installed | Adjust the voltage to the normal range Cancel the external power or install a braking resistor Increase acceleration time Install brake unit and resistor | | Deceleration
overvoltage | E006 | 1. Input voltage is too high 2. There is an external force dragging the motor to run during deceleration 3. Deceleration time is too short 4. Install a brake unit and a brake resistor | Adjust the voltage to the normal range Cancel the external power or install a braking resistor Increase deceleration time Install brake unit and resistor | | Constant
speed
overvoltage | E007 | Input voltage is too high There is external force dragging the motor during operation | Adjust the voltage to the normal range Cancel the external power or install a braking resistor | | Control
power supply
Fault | E008 | 1. The input voltage is not within the specified range | 1. Adjust the voltage to within the range required by the specification | | Undervoltage
fault | E009 | 1. Momentary power outage 2. The voltage at the inverter input terminal is not within the specified range. scope 3. Bus voltage is abnormal 4. The rectifier bridge and buffer resistor are abnormal 5. Driver board abnormality 6. Control panel abnormality | 1. Reset fault 2. Adjust the voltage to the normal range 3. Seek technical support 4. Seek technical support 5. Seek technical support 6. Seek technical support | | Frequency
Converter
Overload | E010 | Is the load too large or the motor is blocked? The inverter is too small | Reduce the load and check the motor and mechanical condition Choose a frequency converter with a higher power rating | | Motor
overload | E011 | Motor protection parameter Fb.01 Is the setting appropriate? Is the load too large or the motor is blocked? The inverter is too small | Set this parameter correctly Reduce the load and check the | | | | 1 The 1-1 Comment of the control | 1 Plining 1 1 C 1: | |---------------------------------------|------|---|---| | Output phase
loss | E013 | 1. The lead from the inverter to the motor is abnormal 2. The three-phase output of the inverter is unbalanced when the motor is running. 3. Driver board abnormality 4. Module abnormality | Eliminate peripheral faults Check whether the three-phase windings of the motor are normally arranged in parallel Troubleshooting Seek technical support Seek technical support | | Module
overheating | E014 | 1. The ambient temperature is too high 2. Air duct blockage 3. Fan damage 4. The module thermistor is damaged 5. Inverter module is damaged | Reduce ambient temperature Clean the air duct Replace the fan Replace the thermistor Replace the inverter module | | External
water
shortage | E015 | 1. Water shortage detected | 1. Check whether there is water shortage | | Current
Sensing Fault | E018 | Check if the Hall device is abnormal Driver board abnormality | Replace the Hall device Replace the driver board | | EEPROM Read
and write
failure | E022 | 1. EEPROM Chip damage | Press Run/Stop Key reset Replace the main control board | | Short
circuit to
ground Fault | E023 | 1. The motor is short-circuited to ground | 1. Replace the cable or motor 2. Seek services | | PID Feedback
cut off Line
Fault | E024 | The sensor is disconnected or in poor contact The disconnection detection time is too short The sensor is damaged or the system has no feedback signal | Check the sensor installation and wiring Lengthen the disconnection detection time Replace the sensor | | Run time
arrive | E025 | 1. Running time to set time | 1. Seek services | | Water
shortage
failure | E027 | 1. Abnormal water pressure/water level 2. The sensor is disconnected or in poor contact, and the system has no feedback. Feedback signal 3. Water shortage alarm detection time is too short (F0.29) 4. Water shortage protection detection frequency is too low (F0.27) 5. Water shortage protection detection current is too high (F0.28) | Check whether the water pressure at the water pump inlet is abnormal 2. Check the sensor installation and wiring Check relevant parameter settings | | High water
pressure
alarm | E028 | Abnormal sensor feedback signal The high pressure alarm value is adjusted too low (F0.21) The alarm detection time is adjusted too short (F0.22) | Check the sensor wiring Detection related parameter settings | | Low water
pressure
alarm | E029 | 1. The low pressure alarm value is set too high (F0.23) 2. The sensor is disconnected or in poor contact, and the system has no feedback. Feedback signal 3. The sensor type selection does not match the actual situation | Modify parameters Detection sensor | | Password
Protecting | | 1. The inverter is set with a user password | 1. Enter the correct user password or contact the agent business | ### 5) other - \bullet $\,$ Products are constantly improving, parameters and contents are subject to change without prior notice; - \bullet $\,$ If you have any questions, please consult your agent or distri